Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Dev ; 19(1): 3, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383501

RESUMO

BACKGROUND: The evolutionary origins of animal nervous systems remain contentious because we still have a limited understanding of neural development in most major animal clades. Annelids - a species-rich group with centralised nervous systems - have played central roles in hypotheses about the origins of animal nervous systems. However, most studies have focused on adults of deeply nested species in the annelid tree. Recently, Owenia fusiformis has emerged as an informative species to reconstruct ancestral traits in Annelida, given its phylogenetic position within the sister clade to all remaining annelids. METHODS: Combining immunohistochemistry of the conserved neuropeptides FVamide-lir, RYamide-lir, RGWamide-lir and MIP-lir with gene expression, we comprehensively characterise neural development from larva to adulthood in Owenia fusiformis. RESULTS: The early larval nervous system comprises a neuropeptide-rich apical organ connected through peripheral nerves to a prototroch ring and the chaetal sac. There are seven sensory neurons in the prototroch. A bilobed brain forms below the apical organ and connects to the ventral nerve cord of the developing juvenile. During metamorphosis, the brain compresses, becoming ring-shaped, and the trunk nervous system develops several longitudinal cords and segmented lateral nerves. CONCLUSIONS: Our findings reveal the formation and reorganisation of the nervous system during the life cycle of O. fusiformis, an early-branching annelid. Despite its apparent neuroanatomical simplicity, this species has a diverse peptidergic nervous system, exhibiting morphological similarities with other annelids, particularly at the larval stages. Our work supports the importance of neuropeptides in animal nervous systems and highlights how neuropeptides are differentially used throughout development.


Assuntos
Anelídeos , Neuropeptídeos , Poliquetos , Animais , Filogenia , Anelídeos/anatomia & histologia , Anelídeos/genética , Sistema Nervoso/metabolismo , Poliquetos/anatomia & histologia , Poliquetos/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Larva
2.
Sci Rep ; 13(1): 19419, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993494

RESUMO

Benthic annelids belonging to the family Syllidae (Annelida, Errantia, Phyllodocida) exhibit a unique reproduction mode called "schizogamy" or "stolonization", in which the posterior body part filled with gametes detaches from the original body, as a reproductive unit (stolon) that autonomously swims and spawns. In this study, morphological and histological observations on the developmental processes during stolonization were carried out in Megasyllis nipponica. Results suggest that the stolon formation started with maturation of gonads, followed by the formation of a head ganglion in the anteriormost segment of the developing stolon. Then, the detailed stolon-specific structures such as stolon eyes and notochaetae were formed. Furthermore, expression profiles of genes involved in the anterior-posterior identity (Hox genes), head determination, germ-line, and hormone regulation were compared between anterior and posterior body parts during the stolonization process. The results reveal that, in the posterior body part, genes for gonadal development were up-regulated, followed by hormone-related genes and head-determination genes. Unexpectedly, Hox genes known to identify body parts along the anterior-posterior axis showed no significant temporal expression changes. These findings suggest that during stolonization, gonad development induces the head formation of a stolon, without up-regulation of anterior Hox genes.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , Anelídeos/anatomia & histologia , Perfilação da Expressão Gênica , Genes Homeobox , Hormônios , Poliquetos/genética
3.
Toxins (Basel) ; 15(11)2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999518

RESUMO

The immense biodiversity of marine invertebrates makes them high-value targets for the prospecting of novel bioactives. The present study investigated proteinaceous toxins secreted by the skin and proboscis of Glycera alba (Annelida: Polychaeta), whose congenerics G. tridactyla and G. dibranchiata are known to be venomous. Proteomics and bioinformatics enabled the detection of bioactive proteins that hold potential for biotechnological applications, including toxins like glycerotoxins (GLTx), which can interfere with neuromuscular calcium channels and therefore have value for the development of painkillers, for instance. We also identified proteins involved in the biosynthesis of toxins. Other proteins of interest include venom and toxin-related bioactives like cysteine-rich venom proteins, many of which are known to interfere with the nervous system. Ex vivo toxicity assays with mussel gills exposed to fractionated protein extracts from the skin and proboscis revealed that fractions potentially containing higher-molecular-mass venom proteins can exert negative effects on invertebrate prey. Histopathology, DNA damage and caspase-3 activity suggest significant cytotoxic effects that can be coadjuvated by permeabilizing enzymes such as venom metalloproteinases M12B. Altogether, these encouraging findings show that venomous annelids are important sources of novel bioactives, albeit illustrating the challenges of surveying organisms whose genomes and metabolisms are poorly understood.


Assuntos
Anelídeos , Poliquetos , Toxinas Biológicas , Animais , Anelídeos/genética , Invertebrados , Organismos Aquáticos
4.
BMC Genomics ; 24(1): 583, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784028

RESUMO

BACKGROUND: Restorative regeneration, the capacity to reform a lost body part following amputation or injury, is an important and still poorly understood process in animals. Annelids, or segmented worms, show amazing regenerative capabilities, and as such are a crucial group to investigate. Elucidating the molecular mechanisms that underpin regeneration in this major group remains a key goal. Among annelids, the nereididae Platynereis dumerilii (re)emerged recently as a front-line regeneration model. Following amputation of its posterior part, Platynereis worms can regenerate both differentiated tissues of their terminal part as well as a growth zone that contains putative stem cells. While this regeneration process follows specific and reproducible stages that have been well characterized, the transcriptomic landscape of these stages remains to be uncovered. RESULTS: We generated a high-quality de novo Reference transcriptome for the annelid Platynereis dumerilii. We produced and analyzed three RNA-sequencing datasets, encompassing five stages of posterior regeneration, along with blastema stages and non-amputated tissues as controls. We included two of these regeneration RNA-seq datasets, as well as embryonic and tissue-specific datasets from the literature to produce a Reference transcriptome. We used this Reference transcriptome to perform in depth analyzes of RNA-seq data during the course of regeneration to reveal the important dynamics of the gene expression, process with thousands of genes differentially expressed between stages, as well as unique and specific gene expression at each regeneration stage. The study of these genes highlighted the importance of the nervous system at both early and late stages of regeneration, as well as the enrichment of RNA-binding proteins (RBPs) during almost the entire regeneration process. CONCLUSIONS: In this study, we provided a high-quality de novo Reference transcriptome for the annelid Platynereis that is useful for investigating various developmental processes, including regeneration. Our extensive stage-specific transcriptional analysis during the course of posterior regeneration sheds light upon major molecular mechanisms and pathways, and will foster many specific studies in the future.


Assuntos
Anelídeos , Poliquetos , Animais , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Anelídeos/genética , Poliquetos/genética , Perfilação da Expressão Gênica
5.
Mol Phylogenet Evol ; 187: 107872, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451325

RESUMO

Siboglinid tubeworms are found at chemosynthetic environments worldwide and the Vestimentifera clade is particularly well known for their reliance on chemoautotrophic bacterial symbionts for nutrition. The mitochondrial genomes have been published for nine vestimentiferan species to date. This study provides new complete mitochondrial genomes for ten further Vestimentifera, including the first mitochondrial genomes sequenced for Alaysia spiralis, Arcovestia ivanovi, Lamellibrachia barhami, Lamellibrachia columna, Lamellibrachia donwalshi, and unnamed species of Alaysia and Oasisia. Phylogenetic analyses combining fifteen mitochondrial genes and the nuclear 18S rRNA gene recovered Lamellibrachia as sister to the remaining Vestimentifera and Riftia pachyptila as separate from the other vent-endemic taxa. Implications and auxiliary analyses regarding differing phylogenetic tree topologies, substitution saturation, ancestral state reconstruction, and divergence estimates are also discussed. Additionally, a new species of Alaysia is described from the Manus Basin.


Assuntos
Anelídeos , Genoma Mitocondrial , Poliquetos , Animais , Poliquetos/genética , Filogenia , Anelídeos/genética , Bactérias/genética
6.
Genes (Basel) ; 14(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37510405

RESUMO

ParaHox genes are key developmental regulators involved in the patterning of the digestive tract along the anteroposterior axis and the development of the nervous system. Most studies have focused on the function of these genes in embryogenesis, while their expression patterns in postembryonic development often remain unknown. In this study, we identified for the first time all ParaHox orthologs in two naidid oligochaetes, N. communis and P. longiseta, and described their expression patterns during normal growth and fission in these animals. We showed that Gsx and Cdx are presented by two paralogs, while Xlox is a single copy gene in both species. Using whole-mount in situ hybridization, we also found that orthologs, except for the Xlox gene, have similar activity patterns with minor differences in details, while the expression patterns of paralogs can differ significantly. However, all these genes are involved in axial patterning and/or in tissue remodeling during growth and asexual reproduction in naidids. Moreover, during paratomic fission, these genes are expressed with spatial colinearity but temporal colinearity is broken. The results of this study may be evidence of the functional diversification of duplicated genes and suggest involvement of the ParaHox genes in whole-body patterning during growth and asexual reproduction in annelids.


Assuntos
Anelídeos , Proteínas de Homeodomínio , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Genes Homeobox , Anelídeos/genética , Trato Gastrointestinal/metabolismo , Genes Duplicados
7.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511295

RESUMO

During the early development of marine invertebrates, planktic larvae usually occur, and their body surfaces often form specific types of cilia that are involved in locomotion and feeding. The echiuran worm Urechis unicinctus sequentially undergoes the formation and disappearance of different types of body surface cilia during embryonic and larval development. The morphological characteristics and molecular mechanisms involved in the process remain unclear. In this study, we found that body surface cilia in U. unicinctus embryos and larvae can be distinguished into four types: body surface short cilia, apical tufts, circumoral cilia and telotrochs. Further, distribution and genesis of the body surface cilia were characterized using light microscope and electron microscope. To better understand the molecular mechanism during ciliogenesis, we revealed the embryonic and larval transcriptome profile of the key stages of ciliogenesis in U. unicinctus using RNA-Seq technology. A total of 29,158 differentially expressed genes (DEGs) were obtained from 24 cDNA libraries by RNA-Seq. KEGG pathway enrichment results showed that Notch, Wnt and Ca2+ signaling pathways were significantly enriched during the occurrence of apical tufts and circumoral cilia. Furthermore, all DEGs were classified according to their expression pattern, and DEGs with similar expression pattern were grouped into a module. All DEG co-expression modules were correlated with traits (body surface short cilia, apical tufts, circumoral cilia and telotrochs) by WGCNA, the results showed DEGs were divided into 13 modules by gene expression patterns and that the genes in No. 7, No. 8 and No. 10 modules were to be highly correlated with the occurrence of apical tufts, circumoral cilia and telotrochs. The top 10 hub genes in the above three modules were identified to be highly correlated with ciliogenesis, including the reported cilium-related gene Cnbd2 and unreported cilium-related candidate genes FAM181B, Capsl, Chst3, TMIE and Innexin. Notably, Innexin was included in the top10 hub genes of the two modules (No. 7 and No. 8), suggesting that Innexin may play an important role in U. unicinctus apical tufts, circumoral cilia and telotrochs genesis. This study revealed the characteristics of ciliogenesis on the body surface of U. unicinctus embryos and larvae, providing basic data for exploring the molecular mechanism of ciliogenesis on the body surface.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , Poliquetos/genética , Perfilação da Expressão Gênica , Transcriptoma , Transdução de Sinais
8.
Mol Biol Rep ; 50(9): 7183-7196, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37407804

RESUMO

BACKGROUND: The mitochondrial genomes (mitogenomes) of the family Serpulidae are characterized by a high nucleotide sequence divergence and a significant number of gene order rearrangements compared with other families within the phylum Annelida. However, only two of 50 genera of serpulids have mitogenomes already sequenced. In this study, we report the first sequencing and assembly of the complete mitogenome of Ficopomatus, thus providing further knowledge on mitochondrial gene sequences of Serpulidae. METHODS AND RESULTS: A mitogenome of the invasive reef-building polychaete Ficopomatus enigmaticus was amplified by long PCR and sequenced using the Illumina MiSeq System. It comprised 15,853 bp and consisted of 12 protein-coding genes (atp8 was not found), 23 tRNA, and two rRNA genes. The AT and GC skew values were infrequent when compared to annelid mitogenomes but similar to other serpulids sequenced to date (i.e., Spirobranchus and Hydroides). The mitochondrial gene order of F. enigmaticus was highly rearranged compared to other serpulids. To amplify 16S rRNA gene sequences, we developed a 16S rRNA primer set by modifying the universal primer set 16SarL/16SbrH. We detected the 16S rRNA sequence of F. enigmaticus deposited in GenBank erroneously characterized as of serpulid origin. We reported for the first time the presence of two lineages of F. enigmaticus in Japan, which have already been identified in California, Australia, and the Mediterranean. CONCLUSIONS: The first mitochondrial genome of F. enigmaticus showed a unique gene order rearrangement, corroborating the remarkable diversity in the previously reported mitogenomes of other serpulid species. The presence of the two lineages of F. enigmaticus identified for the first time in Japan represents another case of cryptic invasion. The first 16S rRNA gene sequences of F. enigmaticus obtained in the present study can be used as reference sequences in future DNA metabarcoding studies.


Assuntos
Anelídeos , Genoma Mitocondrial , Poliquetos , Animais , Anelídeos/genética , Genoma Mitocondrial/genética , Filogenia , Poliquetos/genética , RNA Ribossômico 16S/genética
9.
Genome Biol Evol ; 15(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37401460

RESUMO

Deep-sea polynoid scale worms endemic to hydrothermal vents have evolved an adaptive strategy to the chronically hypoxic environment, but its underlying molecular mechanisms remain elusive. Here, we assembled a chromosome-scale genome of the vent-endemic scale worm Branchipolynoe longqiensis (the first annotated genome in the subclass Errantia) and annotated two shallow-water polynoid genomes, aiming to elucidate the adaptive mechanisms. We present a genome-wide molecular phylogeny of Annelida which calls for extensive taxonomy revision by including more genomes from key lineages. The B. longqiensis genome with a genome size of 1.86 Gb and 18 pseudochromosomes is larger than the genomes of two shallow-water polynoids, possibly due to the expansion of various transposable elements (TEs) and transposons. We revealed two interchromosomal rearrangements in B. longqiensis when compared with the two shallow-water polynoid genomes. The intron elongation and interchromosomal rearrangement can influence a number of biological processes, such as vesicle transport, microtubules, and transcription factors. Furthermore, the expansion of cytoskeleton-related gene families may favor the cell structure maintenance of B. longqiensis in the deep ocean. The expansion of synaptic vesicle exocytosis genes has possibly contributed to the unique complex structure of the nerve system in B. longqiensis. Finally, we uncovered an expansion of single-domain hemoglobin and a unique formation of tetra-domain hemoglobin via tandem duplications, which may be related to the adaptation to a hypoxic environment.


Assuntos
Anelídeos , Fontes Hidrotermais , Poliquetos , Animais , Anelídeos/genética , Filogenia , Hemoglobinas/genética , Poliquetos/genética , Genômica , Água
10.
Aquat Toxicol ; 260: 106594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263159

RESUMO

Toll-like receptors (TLR) are an important class of pattern recognition receptors involved in innate immunity that recognize pathogen-associated and damage-associated molecular patterns. Although the role of TLRs in immunity has been extensively studied, a systematic investigation of their function in environmental adaptation is still in its infancy. In this study, a genome-wide search was conducted to systematically investigate TLR family members of Urechis unicinctus, a typical benthic organism in intertidal mudflats. A total of 28 TLR genes were identified in the U. unicinctus genome, and their fundamental physiological and biochemical properties were characterized. Gene copy number analysis among species in different habitats indicated that TLR family gene expansion may be probably related with benthic environmental adaptation. To further investigate the expression patterns of TLR members under environmental stress, transcriptome data was analyzed from different developmental stages and the hindgut under sulfide stress. Transcriptome analysis of different developmental stages showed that most TLR genes were highly expressed during a key period of benthic environment adaptation (worm-shaped larva). Transcriptome analysis of the hindgut under sulfide stress showed that the expression of 12 TLR members was significantly induced under sulfide stress. These results indicate that the regulation of TLR gene expression may be probably involved in the adaptation of U. unicinctus to the benthic intertidal zone environment. Taken together, this study may lay the foundation for future functional analysis of the specific role of TLRs in host immune responses against sulfide exposure and benthic environmental stress in annelid.


Assuntos
Anelídeos , Poliquetos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Anelídeos/genética , Poliquetos/genética , Receptores Toll-Like/genética , Sulfetos
11.
Mol Phylogenet Evol ; 185: 107811, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169231

RESUMO

Polynoidae is the most diverse radiation of Aphroditiformia and one of the most successful groups of all Annelida in terms of diversity and habitats colonized. With such an unmatched diversity, phylogenetic investigations have struggled to understand their evolutionary relationships. Previous phylogenetic analyses have slowly increased taxon sampling and employed methodologies, but despite their diversity and biological importance, large genomic sampling is limited. To investigate the internal relationships within Polynoidae, we conducted the first phylogenomic analyses of the group based on 12 transcriptomes collected from species inhabiting a broad array of habitats, including shallow and deep waters, as well as hydrothermal vents, anchialine caves and the midwater. Our phylogenomic analyses of Polynoidae recovered congruent tree topologies representing the clades Polynoinae, Macellicephalinae and Lepidonotopodinae. Members of Polynoinae and Macellicephalinae clustered in well-supported and independent clades. In contrast, Lepidonotopodinae taxa were always recovered nested within Macellicephalinae. Though our sampling only covers a small proportion of the species known for Polynoidae, our results provide a robust phylogenomic framework to build from, emphasizing previously hypothesized relationships between Macellicephalinae and Lepidonotopodinae taxa, while providing new insights on the origin of enigmatic cave and pelagic lineages.


Assuntos
Anelídeos , Poliquetos , Animais , Filogenia , Transcriptoma , Anelídeos/genética , Poliquetos/genética , Evolução Biológica
12.
Nat Commun ; 14(1): 2814, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198188

RESUMO

Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.


Assuntos
Anelídeos , Poliquetos , Animais , Simbiose/genética , Anelídeos/genética , Poliquetos/genética , Poliquetos/metabolismo , Genoma/genética , Genômica , Filogenia
13.
Syst Biol ; 72(4): 925-945, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083277

RESUMO

The mitochondrial genomes of Bilateria are relatively conserved in their protein-coding, rRNA, and tRNA gene complement, but the order of these genes can range from very conserved to very variable depending on the taxon. The supposedly conserved gene order of Annelida has been used to support the placement of some taxa within Annelida. Recently, authors have cast doubts on the conserved nature of the annelid gene order. Various factors may influence gene order variability including, among others, increased substitution rates, base composition differences, structure of noncoding regions, parasitism, living in extreme habitats, short generation times, and biomineralization. However, these analyses were neither done systematically nor based on well-established reference trees. Several focused on only a few of these factors and biological factors were usually explored ad-hoc without rigorous testing or correlation analyses. Herein, we investigated the variability and evolution of the annelid gene order and the factors that potentially influenced its evolution, using a comprehensive and systematic approach. The analyses were based on 170 genomes, including 33 previously unrepresented species. Our analyses included 706 different molecular properties, 20 life-history and ecological traits, and a reference tree corresponding to recent improvements concerning the annelid tree. The results showed that the gene order with and without tRNAs is generally conserved. However, individual taxa exhibit higher degrees of variability. None of the analyzed life-history and ecological traits explained the observed variability across mitochondrial gene orders. In contrast, the combination and interaction of the best-predicting factors for substitution rate and base composition explained up to 30% of the observed variability. Accordingly, correlation analyses of different molecular properties of the mitochondrial genomes showed an intricate network of direct and indirect correlations between the different molecular factors. Hence, gene order evolution seems to be driven by molecular evolutionary aspects rather than by life history or ecology. On the other hand, variability of the gene order does not predict if a taxon is difficult to place in molecular phylogenetic reconstructions using sequence data or not. We also discuss the molecular properties of annelid mitochondrial genomes considering canonical views on gene evolution and potential reasons why the canonical views do not always fit to the observed patterns without making some adjustments. [Annelida; compositional biases; ecology; gene order; life history; macroevolution; mitochondrial genomes; substitution rates.].


Assuntos
Anelídeos , Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Ordem dos Genes , Filogenia , Anelídeos/genética , Genes Mitocondriais , Evolução Molecular , DNA Mitocondrial/genética
14.
Zootaxa ; 5256(2): 125-138, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37045234

RESUMO

A new Qinghai-Tibet Plateau species, Rhyacodrilus tanggulaensis Jiang & Cui sp. nov. (Annelida, Clitellata, Naididae, Rhyacodrilinae), is described, and its phylogenetic relationships within the genus is assessed on the basis of both mitochondrial (16S rDNA, COⅠ gene) and nuclear (ITS2) markers. Data from 32 species of Naididae, representing 7 subfamilies and 25 genera are used. Ten species were chosen as outgroup taxa. The molecular data were analyzed by Bayesian inference. The new species is distinguished from other species of Rhyacodrilus by the following combination of characters: dorsal and ventral chaetae with distal tooth 2-3 times longer than proximal, spermathecal and penial chaetae present, atria long and tubular, atrial duct conspicuous. The analyses of the combined molecular data corroborate the close relationship between Naidinae and the rhyacodriline genera Rhyacodrilus, Monopylephorus, and Ainudrilus, and show that the new species is more closely related to R. falciformis, R pigueti, R. okamikae and R. subterraneus, than to R. sinicus, another Chinese species, R. hiemalis and R. coccineus.


Assuntos
Anelídeos , Oligoquetos , Animais , Filogenia , Teorema de Bayes , Rios , Tibet , Anelídeos/genética
15.
Elife ; 122023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795088

RESUMO

Electron microscopy (EM) provides a uniquely detailed view of cellular morphology, including organelles and fine subcellular ultrastructure. While the acquisition and (semi-)automatic segmentation of multicellular EM volumes are now becoming routine, large-scale analysis remains severely limited by the lack of generally applicable pipelines for automatic extraction of comprehensive morphological descriptors. Here, we present a novel unsupervised method for learning cellular morphology features directly from 3D EM data: a neural network delivers a representation of cells by shape and ultrastructure. Applied to the full volume of an entire three-segmented worm of the annelid Platynereis dumerilii, it yields a visually consistent grouping of cells supported by specific gene expression profiles. Integration of features across spatial neighbours can retrieve tissues and organs, revealing, for example, a detailed organisation of the animal foregut. We envision that the unbiased nature of the proposed morphological descriptors will enable rapid exploration of very different biological questions in large EM volumes, greatly increasing the impact of these invaluable, but costly resources.


Assuntos
Anelídeos , Poliquetos , Animais , Microscopia Eletrônica de Volume , Anelídeos/genética , Poliquetos/genética , Microscopia Eletrônica , Transcriptoma
16.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430788

RESUMO

Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.


Assuntos
Anelídeos , Poliquetos , Animais , Camundongos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Filogenia , Anelídeos/genética , Vertebrados/metabolismo , Poliquetos/genética , Poliquetos/metabolismo , Drosophila/metabolismo
17.
Proc Biol Sci ; 289(1982): 20220705, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36264643

RESUMO

In many bilaterians, Hox genes are generally clustered along the chromosomes and expressed in spatial and temporal order. In vertebrates, the expression of Hox genes follows a whole-cluster spatio-temporal collinearity (WSTC) pattern, whereas in some invertebrates the expression of Hox genes exhibits a subcluster-level spatio-temporal collinearity pattern. In bilaterians, the diversity of collinearity patterns and the cause of collinearity differences in Hox gene expression remain poorly understood. Here, we investigate genomic organization and expression pattern of Hox genes in the echiuran worm Urechis unicinctus (Annelida, Echiura). Urechis unicinctus has a split cluster with four subclusters divided by non-Hox genes: first subcluster (Hox1 and Hox2), second subcluster (Hox3), third subcluster (Hox4, Hox5, Lox5, Antp and Lox4), fourth subcluster (Lox2 and Post2). The expression of U. unicinctus Hox genes shows a subcluster-based whole-cluster spatio-temporal collinearity (S-WSTC) pattern: the anterior-most genes in each subcluster are activated in a spatially and temporally colinear manner (reminiscent of WSTC), with the subsequent genes in each subcluster then being very similar to their respective anterior-most subcluster gene. Combining genomic organization and expression profiles of Hox genes in different invertebrate lineages, we propose that the spatio-temporal collinearity of invertebrate Hox is subcluster-based.


Assuntos
Anelídeos , Poliquetos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Anelídeos/genética , Vertebrados/genética
18.
Zoolog Sci ; 39(5): 500-506, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36205371

RESUMO

A new spionid polychaete, Scolelepis (Parascolelepis) brunnea sp. nov., from an intertidal mud flat in Korean waters, is reported. The new species is unique among species of Scolelepis Blainville, 1828 in having conspicuously long, reddish-brown branchiae on the anteriormost chaetigers. The new species is morphologically and genetically most closely related to Scolelepis (Parascolelepis) anterobranchiata Lee and Min, 2022 from Korea. However, the new species differs from the latter by a combination of the following characteristics: presence of reddish-brown pigmentations on anteriormost body, neuropodial hooded hooks appearing from chaetigers 21 to 22, larger size of worms, and three teeth above the main fang of neuropodial hooded hooks. Detailed description and images of the new species, along with three gene regions (cytochrome c oxidase subunit I [COI], 16S ribosomal DNA [16S rDNA], and 18S rDNA), are provided.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , DNA Ribossômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Poliquetos/genética , República da Coreia
19.
Genes Genet Syst ; 97(3): 153-166, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36070927

RESUMO

Understanding the processes and consequences of the morphological diversity of organisms is one of the major goals of evolutionary biology. Studies on the evolution of developmental mechanisms of morphologies, or evo-devo, have been extensively conducted in many taxa and have revealed many interesting phenomena at the molecular level. However, many other taxa exhibiting intriguing morphological diversity remain unexplored in the field of evo-devo. Although the annelid family Syllidae shows spectacular diversity in morphological development associated with reproduction, its evo-devo study, especially on molecular development, has progressed slowly. In this study, we focused on Megasyllis nipponica as a new model species for evo-devo in syllids and performed transcriptome sequencing to develop a massive genetic resource, which will be useful for future molecular studies. From the transcriptome data, we identified candidate genes that are likely involved in morphogenesis, including genes involved in hormone regulation, sex determination and appendage development. Furthermore, a computational analysis of the transcriptome sequence data indicated the occurrence of DNA methylation in coding regions of the M. nipponica genome. In addition, flow cytometry analysis showed that the genome size of M. nipponica was approximately 524 megabases. These results facilitate the study of morphogenesis in molecular terms and contribute to our understanding of the morphological diversity in syllids.


Assuntos
Anelídeos , Biologia do Desenvolvimento , Animais , Transcriptoma , Anelídeos/genética , Genoma , Hormônios , Evolução Biológica
20.
Zootaxa ; 5138(1): 17-30, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36101041

RESUMO

The widely distributed polychaete family Polynoidae Kinberg, 1856 is found across all oceans and from shallow to deep waters, including deep-sea hydrothermal vents and hydrocarbon seeps. Taxa inhabiting chemosynthesis-based ecosystems are often endemic to those specific habitats commonly targeted by deep-sea mining, and understanding their species diversity is essential for shaping conservation plans. Here, we report two previously undescribed scale-worms in the genus Branchinotogluma Pettibone, 1985 from the Off Hatsushima hydrocarbon seep of Sagami Bay and the Nikko Seamount hydrothermal vent on the Izu-Ogasawara Arc, and describe them as B. nikkoensis sp. nov. and B. sagamiensis sp. nov. Branchinotogluma nikkoensis sp. nov. is distinguished from the known species by the following characters: i) ventral segmental lamellae near ventral bases of neuropodia present on segments 1317, ii) dorsal tentacular cirri being longer than ventral tentacular cirri, iii) absence of dorsal tubercles. Branchinotogluma sagamiensis sp. nov. can be differentiated from other congeners by i) 20 segments, ii) dorsal tentacular cirri being longer than ventral tentacular cirri, iii) ventral segmental lamellae near ventral bases of neuropodia present on segments 1318, and iv) thin median antennae. The two new species are distinct in both morphology and four gene sequences from the only two species previously known from Japan including Branchinotogluma japonicus (Miura Hashimoto, 1991) and B. elytropapillata Zhang, Chen Qiu, 2018, originally described from Kaikata Seamount vent on the Izu-Ogasawara Arc and Okinawa Trough, respectively.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , Ecossistema , Hidrocarbonetos , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...